
Reachability Analysis for Neural Feedback Systems using
Regressive Polynomial Rule Inference

Souradeep Dutta
souradeep.dutta@colorado.edu
University of Colorado, Boulder

Boulder, Colorado

Xin Chen
xchen4@udayton.edu
University of Dayton

Dayton, Ohio

Sriram Sankaranarayanan
srirams@colorado.edu

University of Colorado, Boulder
Boulder, Colorado

ABSTRACT

We present an approach to construct reachable set overapproxi-
mations for continuous-time dynamical systems controlled using
neural network feedback systems. Feedforward deep neural net-
works are now widely used as a means for learning control laws
through techniques such as reinforcement learning and data-driven
predictive control. However, the learning algorithms for these net-
works do not guarantee correctness properties on the resulting
closed-loop systems. Our approach seeks to construct overapproxi-
mate reachable sets by integrating a Taylor model-based �owpipe
construction scheme for continuous di�erential equations with an
approach that replaces the neural network function for a small sub-
set of inputs by a local polynomial approximation. We generate the
polynomial approximation using regression from input-output sam-
ples. To ensure soundness, we rigorously quantify the gap between
the output of the network and that of the polynomial model. We
demonstrate the e�ectiveness of our approach over a suite of bench-
mark examples ranging from 2 to 17 state variables, comparing our
approach with alternative ideas based on range analysis.

CCS CONCEPTS

•Computingmethodologies→Neural networks; •Computer

systems organization → Embedded and cyber-physical sys-

tems; • Mathematics of computing → Interval arithmetic; Dif-
ferential equations;

KEYWORDS

reachability analysis, polynomial regression , neural network, hy-
brid system, �owpipe construction

ACM Reference Format:

Souradeep Dutta, Xin Chen, and Sriram Sankaranarayanan. 2019. Reachabil-
ity Analysis for Neural Feedback Systems using Regressive Polynomial Rule
Inference. In 22nd ACM International Conference on Hybrid Systems: Compu-

tation and Control (HSCC ’19), April 16–18, 2019, Montreal, QC, Canada.ACM,
New York, NY, USA, Article 4, 12 pages. https://doi.org/10.1145/3302504.
3313351

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
HSCC ’19, April 16–18, 2019, Montreal, QC, Canada

© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6282-5/19/04.
https://doi.org/10.1145/3302504.3313351

1 INTRODUCTION

We present a reachability analysis approach for neural feedback
systems consisting of nonlinear ODEs with deep neural networks
as feedback. Given initial conditions and a range of possible time-
varying disturbances, our approach computes an overapproxima-
tion of the reachable sets over a �nite time horizon. The overap-
proximation can be used to prove safety properties of the system
by excluding a given target set. Additionally, reachability proofs
are obtained by showing that the reachable set at some time instant
lies entirely inside a target set.

Neural feedback systems naturally arise in safety critical systems
wherein neural networks are synthesized through approaches such
as reinforcement learning [42], learning from demonstrations [25]
or translating a large lookup table-based controller into a more
compact form using neural networks [23]. However, veri�cation of
these closed-loop systems remains a key challenge. A rapidly grow-
ing body of recent work focuses on verifying pre-/post-conditions
for neural networks in isolation [16, 17, 26, 29, 36]. The applications
to such veri�cation are numerous, ranging from reasoning about
“robustness” of classi�ers used in perception systems to synthesiz-
ing adversarial inputs to improve training [5, 21, 35]. Our work
considers neural networks in conjunction with ODE models.

First we note that a straightforward combination of existing
tools: a �owpipe construction for ODEs [10] and a range analysis
for neural networks [16] su�ers from large overestimation errors
due to the wrapping e�ect [33]. This motivates the overall approach
of this paper using rule generation. Rather than abstract the out-
put, our approach abstracts the function computed by the network
using a local polynomial approximation along with rigorous error
bounds. Formally, given a set of inputs, we compute the output as
a polynomial over the input using regression. Next, we compute
an error interval that conservatively accounts for the di�erence
between the network function and the polynomial approximation.
This yields a “local” Taylor model (polynomial + interval) overap-
proximation of the neural network that is integrated into a Taylor
model-based �owpipe construction tool Flow* [7, 10]. The result is
signi�cantly less prone to runaway overestimation errors due to
the wrapping e�ect, as shown by our evaluation.

The key technical challenge therefore lies in computing the error
between a neural network and a polynomial approximation over
a given range of inputs. This problem can be solved as a mixed
integer nonlinear optimization (MINLP), but is signi�cantly larger
than what current MINLP solvers can handle, even for tiny neural
networks. Therefore, we use an indirect approach. First, we produce
a piecewise linearization (PWL) of the polynomial using branch-
and-bound search with interval analysis. The error between the
polynomial and the PWL approximation is guaranteed to lie within

HSCC ’19, April 16–18, 2019, Montreal, QC, Canada Du�a, Chen and Sankaranarayanan

a given tolerance bound. Next, we compute the maximum and
minimum di�erence between the neural network model and the
PWL approximation using a combination of mixed integer linear
programming (MILP) solver and local gradient-descent search along
the lines of a recent work by Dutta et al [16]. The �nal error interval
is obtained by adding the error between the original polynomial
and the PWL model plus the error between the PWL model and
the neural network.

Our experimental evaluation considers eleven neural networks
that were created to stabilize a series of benchmark dynamical sys-
tems with neural network sizes ranging from 50-500 neurons and
up to 6 hidden layers. The learning was carried out directly inside
the Tensor�ow framework [1]. Our approach is shown to be signif-
icantly faster and more accurate even with larger initial sets and
a longer time horizon, when compared to a direct combination of
Flow* and Sherlock tools. Thus, abstracting the function computed
by the NN as opposed to just the set of outputs is necessary to avoid
the wrapping e�ect in reachable set computation.

1.1 Related Work

The problem of constructing overapproximations to the reach sets
of continuous and hybrid systems has received signi�cant attention
in the past two decades. Representative approaches for linear hybrid
systems include tools such as SpaceEx [18] and HyLAA [4], while
tools such as Flow* [10], CORA [2], HyCreate [3], C2E2 [14] and
dReach [27] can tackle nonlinear systems. The model considered in
this work consists of ODEs in feedback with neural networks that
represent piecewise linear functions. Although such a model can be
translated into a hybrid automaton, an upfront translation is often
prohibitively expensive. An on-the-�y translation can alleviate this
cost but in turn su�ers from the cost of dealingwith numerousmode
transitions at each reachability computation step. The approach
in this paper alleviates this complexity by locally approximating
the feedback as a polynomial function of the inputs to the network
with an appropriate error term. This avoids the need to explicitly
consider mode changes in our framework.

Providing formal guarantees to neural network based feedback
systems has grown in importance, since neural networks are be-
coming increasingly common in safety-critical applications. Given
pre-condition assertions describing the inputs of a network, the
veri�cation problem asks whether the resulting outputs satisfy
post-condition assertions. Numerous approaches have been pro-
posed for neural network veri�cation, starting from the abstraction-
re�nement approach of Pulina et al. [35, 36]. Therein, the nonlinear
activations are systematically abstracted using an abstract relation,
resulting in a linear arithmetic SMT formula. Spurious counterex-
amples are then used to re�ne the abstractions. The rapid improve-
ments to the state-of-the-art linear arithmetic solvers such as Z3,
CVC4 and MathSAT have made this approach increasingly feasible.
Katz et al. present a solver specialized for neural networks with
ReLU units by building on the standard simplex algorithm using
special rules for handling nonlinear constraints involving the ReLU
activation function [26]. Their approach was used to verify a neural
network encoding advisories for an aircraft collision avoidance sys-
tem. Recent work by Ehlers augments a branch-and-bound solver

using facts inferred from a convexi�cation of the activation func-
tions [17]. Their approach can also handle max-pooling layers that
are commonly used in applications in image classi�cation. Other
approaches to veri�cation focus on the synthesis of adversarial
counterexamples [5, 21] and simulation-based approaches [44].

However, the approaches mentioned above consider the network
in isolatonwhich is important for a wide variety of applications. Our
focus in this paper requires an approach that can propagate sets of
states across networks. Lomuscio et al. evaluate an mixed integer
linear program (MILP) encoding to analyze networks learned using
reinforcement learning [29]. Earlier work by Dutta et al. extend
the MILP approach by using local search to compute ranges over
the output of a network given a polyhedron over its inputs [15].
This approach has led to a prototype tool Sherlock that produces
ranges on the outputs given ranges on the inputs of the network.
In principle, a combination of Sherlock with a reachability analysis
tool (such as Flow*) can solve the problem at hand. However, this
approach produces highly inaccurate results on all the benchmarks
used in our evaluation. This happens because of the well known
wrapping e�ect in reachability analysis. Another recent approach
involves the work of Xiang et al. that computes the output ranges
as a union of convex polytopes [45]. This approach does not use
SMT or MILP solvers unlike other approaches and thus can lead to
highly accurate estimates of the output range. However, judging
from preliminary evaluation reported, the cost of manipulating
polyhedra is quite expensive, and thus, the approach is currently
restricted to smaller networks when compared to SMT/MILP-based
approaches [15, 17, 26, 29, 36]. Another recent work by Xiang et
al. considers the combination of neural networks in feedback with
piecewise linear dynamical systems [46] using the techniques pre-
sented in [45]. Their approach is based on abstracting the outputs
and currently lacks a detailed evaluation. Additionally, our approach
handles nonlinear systems wherein the wrapping e�ect is often
more pronounced, and thus, a bigger challenge.

Another approach to safety veri�cation involves the use of dis-
cretized plant models and neural network controllers studied by
Scheibler et al. [41] and recently by Dutta et al. [15]. These ap-
proaches use Runge-Kutta solvers to discretize the ODEs and check
input/output assertions on the unrolling. Our approach here handles
continuous-time dynamics speci�ed by ODEs without requiring
a discretization. To overcome the wrapping e�ect, our approach
considers the idea of using sound rule generation. Rule generation
refers to the inference of input-output relations that hold for a given
set of inputs to the network [19]. The primary objective of rule gen-
eration has been to explicitly write down the “knowledge” encoded
in the network in a transparent, possibly human understandable
form [31]. Thus, most approaches to rule generation focus on gener-
ating a combination of Boolean implications, and are approximate
in nature [43]. In this paper, we focus on rules that are of the form
y ∈ p(x) + I wherein p is a polynomial over the inputs x to the
network, y is the output of the network. Rule generation has had a
long history of research in the AI community. Our approach here
di�ers signi�cantly in (a) the form of the rules inferred and (b) the
need for sound rule generation with an error interval I . The use of
regression in rule generation has been explored by Saito et al [38].
One key di�erence is that our approach includes a rigorous error

HSCC ’19, April 16–18, 2019, Montreal, QC, Canada Du�a, Chen and Sankaranarayanan

TM of f . TMs can also be organized as vectors to overapproximate
vector-valued functions.

TMs are closed under most basic arithmetic operations and the
overapproximation property is conserved. For example, assume
that (pf , If) and (pд , Iд) are TMs of the functions f and д respec-
tively over the domain D, then the summation (pf , If) + (pд , Iд) =
(pf + pд , If + Iд) is a TM of f + д. Other operations include multi-
plication, application of any smooth function, di�erentiation and
integration. TM arithmetic was originally developed by Berz and
Makino (see [6, 30]), and a powerful integration technique which
is called TM integration [7, 9] is implemented based on it. The
extension of the method also allows ODEs to have time-varying
disturbances [8].

Given an ODE Ûx = f (x, u,w) with a feedback law u(t) = д(x, t),
a time horizon [0,T] and integration time step τI , we may use
a TM integrator such as Flow* to compute a series of N TMs
(p0, I0), . . . , (pN−1, IN−1) wherein N = ⌈ TτI ⌉, and (pj , Ij) is a TM
that overapproximates the reachable sets of the closed loop system
over the time interval [jτI , (j + 1)τI]. The tool may also adaptively
vary the integration time step τI and the degree of the polynomials
pj using heuristics that are described elsewhere [8].
Neural Network. Next, we de�ne feedforward neural networks
(FNNs). Structurally, a FNN N consists of k > 0 hidden layers,
wherein we assume that each layer has the same number of neurons
N > 0. We use Ni j to denote the jth neuron of the ith layer for
j ∈ {1, . . . ,N } and i ∈ {1, . . . ,k}.

De�nition 2.4 (Neural Network). A k layer, n input , neural net-
work with N neurons per hidden layer is described by matrices:
(W0, b0), . . ., (Wk−1, bk−1), (Wk , bk), wherein (a)W0, b0 are N × n
and N × 1 matrices denoting the weights connecting the inputs to
the �rst hidden layer, (b)Wi , bi for i ∈ [1,k − 1] connect layer i to
layer i + 1 and (c)Wk , bk connect the last layer k to the output.

Each neuron is de�ned using its activation function σ linking its
input value to the output value. Although this can be any nonlinear
function, we focus on neural networks with “ReLU” activation
functionσ (z) : max(z, 0). However, the techniques presented in this
paper extend to other types of activation units through piecewise
linearization [16].

For a neural network N , as described above, the function FN :
R
n → R computed by the neural network is given by the composi-

tion FN := Fk ◦ · · · ◦ F0 wherein Fi (z) : σ (Wi z + bi) is the function
computed by the ith hidden layer, F0 the function linking the inputs
to the �rst layer, and Fk linking the last layer to the output. Note
that the function de�ned by a neural network with ReLU activation
functions is continuous and piecewise di�erentiable.
Range Analysis for Neural Networks. The problem of range
analysis for a neural network starts from a network N and a set
x ∈ D of inputs to the network. The goal is to �nd an interval [ℓ,u]
such that (∀ x ∈ I) FN (x) ∈ [ℓ,u].

Often, we are interested in ensuring that the interval is tight.
Finding such an interval over the outputs is performed by solving
two optimization problems:

max(min) y s.t x ∈ I ∧ y = FN (x) ,

ODE
Ûx = f (x, u,w)

FNN
u(jτc) = FN (x(jτc))

Sample

Hold

x(t)

x(jτc)

u(jτc)

w(t)

clk

Figure 3: Block diagramof a neural feedback control system.

However, the problem of solving optimization problems with
neural network constraints is highly nonlinear. Using the proper-
ties of ReLU function, it can be encoded as a large mixed integer
linear program (MILP) [16, 29]. Recent work by Dutta et al, aug-
ments the MILP approach by using local gradient information to
improve the current solution. While the approach uses an MILP
solver to perform global search, it is only asked to provide a small
ϵ improvement to an existing local solution, when it is stuck in a
local minima. The combined approach is reported to be faster and
more e�ective for many of the networks tested, and implemented
inside the tool Sherlock [16].

3 PROBLEM STATEMENT AND APPROACH

We present the problem statement and a high level overview of our
approach.

3.1 Problem Statement

De�nition 3.1 (Neural Feedback System). A Neural Feedback Sys-

tem S is a tuple 〈X ,U ,W , f (x, u,w),N ,τc 〉 wherein Ûx = f (x, u,w)

de�nes the dynamics of the continuous component, X ⊆ Rn is the
state space of the system,U ⊆ Rm is the control input range, and
W ⊆ Rl is the range of the time-varying disturbances. Finally, τc is
the time period of the controller, i.e., the control stepsize.

Figure 3 shows a block diagram representation of a NFS. The
feedback N is a FNN with input x ∈ X and yields an output u ∈
U . The neural network is invoked at time instants t = jτc for
j ∈ N, with the output of the network held constant over times
t ∈ [jτc , (j + 1)τc). The network is assumed to compute its output
instantaneously whenever its inputs change.

Given a bounded time horizon [0,T], initial state x0 and a dis-
turbance w : [0,T] 7→ W , trajectory x(t) and control signal u(t)
for t ∈ [0,T] are de�ned as follows. For each time interval t ∈
[jτc , (j + 1)τc] such that j = 0, 1, . . . , Tτc − 1, we have that x(t) =
φf (x(jτc), t − jτc , u(t),w(t)) and u(t) = FN (x(jτc)).

It is obvious that the reachability problem is undecidable on
NFSs, since it is already undecidable on CDS. Thus we want to
compute an accurate overapproximation for the reachable set of a
NFS in order to prove its safety.

3.2 Our Approach

Our approach exploits the local continuity properties of the feed-
back function FN (x). Rather than consider the given NFS as a hybrid
automaton, we will consider it as a continuous feedback system and
locally approximate the feedback FN by a polynomial of a given
degree, while carefully accounting for the error.

HSCC ’19, April 16–18, 2019, Montreal, QC, Canada Du�a, Chen and Sankaranarayanan

However, in many instances, OLS approaches to polynomial
regression yield large coe�cients c that make the error computation
quite expensive. To control the size of the coe�cients, we adopt
two popular ideas: (a) We use ridge regression, wherein we add the
norm of c as a penalty function to the objective.

min
c

K∑

j=1

(yi − p(xi ; c))
2
+ γ cT c .

Here γ is a constant that weights the penalty term with respect to
the regression error. (b) Rather than construct an order k model
in “one shot”, we start by �rst �tting an order 1 (linear model)
p1(x). Next, we �t a purely quadratic model to the residual function
yi − p1(xi). The result is an order two model p1 + p2. We proceed
thus until the maximum residual is within tolerance. This approach
provides yet another way to bias the search towards lower degree
polynomials.

4.2 Error Analysis

Next, we will focus on computing the error between a polynomial
p(x) and the given network N over a domain D. Let e(x) : FN (x) −
p(x) denote the di�erence between the neural network output and
the polynomial p(x). Therefore, we seek to compute an interval
I : [a,b] such that a ≤ minx∈D e(x) ≤ maxx∈D e(x) ≤ b.
Furthermore, we wish our bounds to be “tight”, in practice.

However, �nding the optimum value of e(x) over D is a large
mixed-integer nonlinear optimization problem, which is quite ex-
pensive to solve in practice. Since our goal is to overapproximate
the range of e , we proceed in two steps: (a) We approximate p using
piecewise linear models (PWL). (b) We compute the error between
the PWL models and the neural network.

Each of the steps is described in the subsequent sections.

5 FROM POLYNOMIALS TO PIECEWISE
LINEAR MODELS

In this section, we describe the approximation of a given polynomial
p(x) over a domain D by piecewise linear (PWL) models.

De�nition 5.1 (PWL Function). A PWL function f : D 7→ R over
a domain D is a set of linear pieces (Rj , cj ,dj)Mj=1 such that (a) each

Rj ⊆ D is a hyper-rectangle; (b) the union of rectangles cover D:
⋃n
j=1 Rj = D; and (c) Ri ∩Rj = ∅ for i , j . The function f is de�ned

as f (x) : cjx + dj whenever x ∈ Rj .

Although we have de�ned a PWL function over non-intersecting
examples: our representation of these functions used subsequently
will perform a topological closure to allow rectangles to share
common faces. The result is technically a PWL relation rather than
a function. Given a domain D, a polynomial p(x) and a desired
tolerance ϵ > 0, we seek to �nd a PWL approximation f : D 7→ R
s.t. (∀ x ∈ D) | f (x) − p(x)| ≤ ϵ .

Algorithm 1 shows the overall scheme to systematically con-
struct a PWL model for a polynomial with a given error tolerance
[−ϵ, ϵ]. The parameter δ > 0 is used primarily by the FindMax-

Interval procedure. The algorithm maintains a set S , which is a
union of mutually disjoint hyperrectangles. At each iteration of the
loop (line 4), it �nds a point xs ∈ S and constructs a linearization
fs around xs (line 7). It then uses the method FindMaxInterval to

Algorithm 1 Algorithm to systematically compute PWL model by
selecting a new sample and building a maximal interval around it,
given polynomial p(x) over domain D with tolerance ϵ and mini-
mum box width δ .

1: procedure FindPWLApproximation(p, D, ϵ , δ)
2: S ← D; ⊲ S ⊆ D represents the region that remains to be

examined.

3: L ← ∅; ⊲ L represents the set of linear pieces thus far.

4: while S , ∅ do

5: xs ← getSample(S); ⊲ Get a current sample from S .

6: (cs ,ds) ← (∇ p(xs), p(xs));
7: fs : λx. cTs (x − xs) + ds ; ⊲ Compute linearization

around xs
8: Bs ← FindMaxInterval(xs ,p − fs , ϵ,δ , S); ⊲

Compute interval Bs .

9: ⊲ FindMaxInterval guarantees that

(∀ x ∈ Bs) |p(x) − fs (x)| ≤ ϵ .

10: S ← S \ Bs ;
11: L ← L ∪ {(Bs , cs , ds − c

T
s xs)}; ⊲ Add to PWL model.

12: return L. ⊲ return the �nal PWL model

estimate an interval Bs around xs such that the |p(x) − fs (x)| ≤ ϵ

for all x ∈ Bs . The region Bs is removed from further consideration
(line 10) and a linear piece is added to the PWL model L.

The algorithm relies on the routine FindMaxInterval. This
routine is shown in Algorithm 2. This routine attempts to �nd a
box B around the current sample x such that the range of a given
polynomial f inside B lies within [−ϵ, ϵ]. The approach �rst builds a
box of width δ around the given sample x (line 2). If the range of the
function inside this box fails to be within the given tolerance, we
conclude that the minimum box width is too large with respect to
the desired tolerance ϵ and terminatewith failure (line 5). Otherwise,
the approach attempts a series of box expansions. The symbol≪i

is used to denote a reduction of the current lower bound for xi by
δ (line 11), whereas ≫i denotes an increase to the current upper
bound by δ (line 12). If the change to the interval requested by
current symbol succeeds in that the new interval continues to lie
within S (line 14) and the range of f continues to lie within [−ϵ, ϵ]
(lines 16, 17), we update the current box (line 19) and save the
current symbol (line 20). Otherwise, we discard the change and
remove the current symbol from future consideration.

Algorithm 2 relies on the routine EvaluateRange that returns
an interval J that overapproximates the range of a polynomial f
over an interval I . We assume that the procedure EvaluateRange
is sound: J ⊇ {y | y = f (x), x ∈ I }.

Theorem 5.2. For any polynomial f , sample x, set S , tolerance ϵ

and minimum box width δ , the FindMaxInterval routine (a) always

terminates; (b) if it succeeds, returns a box B such that f (B) ⊆ [−ϵ, ϵ].

A proof is provided in the appendix. Successful execution of
algorithm 2 requires us to implement a sound range evaluation
procedure EvaluateRange and choose values of ϵ,δ so that the
assertion in line 5 always succeeds.

Lemma 5.3. Algorithm 2 is always called with a function f and x

such that f (x) = 0 and ∇f (x) = 0. Furthermore S ⊆ D.

Reachability Analysis for Neural Feedback Systems HSCC ’19, April 16–18, 2019, Montreal, QC, Canada

Algorithm 2 For a given polynomial function f (x), �nd largest
interval B around sample x such that B ⊆ S and | f (x)| ≤ ϵ . The
input δ is the smallest allowable interval.

1: procedure FindMaxInterval(x, f , ϵ , δ , S)
2: [a, b] ← [x − δ

2
1, x + δ

2
1]; ⊲ Form initial box around x

3: J0 ← EvaluateRange(f , [a, b]);
4: ⊲ Compute range of f over initial box.

5: ASSERT(J0 ⊆ [−ϵ, ϵ]);
6: ⊲ Failure: either ϵ is too small or δ is too large.

7: wlist ← {≪1, . . . ,≪n ,≫1, . . . ,≫n };
8: ⊲≪j : decrease lower bound x j and≫j : increase the upper

bound for x j
9: while wlist , ∅ do
10: s ← pop(wlist); ⊲ pop from the worklist of actions.

11: if s =≪i then â ← a − δei , b̂ = b; end if

12: if s =≫j then â ← a, b̂ = b + δej ; end if

13: if [â, b̂] ⊆ S then

14: ⊲ Ensure that new box remains inside S

15: J ← EvaluateRange(f , [â, b̂]);
16: ⊲ evaluate range of f

17: if J ⊆ [−ϵ, ϵ] then

18: ⊲ error remains within tolerance?

19: a ← â, b ← b̂; ⊲ update the current box

20: push(wlist, s);
21: ⊲ save current direction to try again

22: return [a, b];

The proof is simply to examine the arguments at the only call
site to FindMaxInterval in Algorithm 1.

Theorem 5.4. For any compact set D, and �xed tolerance ϵ > 0,

there is a sound procedureEvaluateRange and a corresponding value

of δ such that the assertion check in line 5 of Algorithm 1 always

succeeds.

The explicit formula for setting δ is provided in the appendix.
Using the properties of the FindMaxInterval method, we now

provide guarantees for Algorithm 1.

Theorem 5.5. If Algorithm 1 terminates with success for input p

over domain D with tolerance ϵ , then the resulting set of linear pieces

L de�ne a PWL function fL such that | fL(x) − p(x)| ≤ ϵ, ∀ x ∈ D.

Data Structures: We note that Algorithms 1 and 2 rely on a data
structure that maintains the disjoint union of boxes. Furthermore,
Alg. 2 guarantees that the corners of these box lie on a uniform
grid of size δ along each axis of the original domain D.

We use a modi�cation of the standard kd-tree data structure to
carry out the basic operations that include (a) �nd an cell in S and
return its center point; (b) check if a box lies entirely inside S ; and
(c) remove a box from S [39]. The details of this data structure and
its implementation will be discussed in an extended version.

Decomposed PWLModels: Another signi�cant detail is that when
the dimensionality of the space is large, the approach of gridding
the state space can cause the number of linear pieces to explode,
making it prohibitively expensive in practice. As a result, we exploit

the fact that p is generally of low degree and is often sparse due to
the nature of the regression techniques used to construct it.

Therefore, we write p(x) as a sum of polynomials, each involving
a much smaller number of variables:

p(x) : p1(x1,1, . . . , x1,k) + · · · + p J (xJ ,1, . . . , xJ ,k).

More speci�cally, each of the summands need involve at most k out
of the n variables, where k is the order of p. Therefore, our approach
separately considers PWL models for p1, . . . ,p J with tolerance ϵ

J .
In practice, since k is typically 2 or 3, we are able to construct PWL
models through subdivisions without su�ering from the curse of
dimensionality.

EvaluateRange Procedure: Theorem 5.4 (proof in Appendix) con-
structs a sound EvaluateRange procedure along with a value of δ
so that the assertion failure in Line 5 of Algorithm 2 never happens.
This is quite cumbersome to implement, in practice. Our implemen-
tation uses standard a�ne arithmetic evaluation [13] built on top
of the MPFI interval arithmetic library [37].

Setting Parameters: Line 5 of Algorithm 2 has an assertion that
requires the user to set parameters ϵ,δ in the right combination
to avoid an assertion failure. In practice, this is quite cumbersome.
Therefore, we allow the user to set ϵ,δ initially. If the condition in
line 5 is not satis�ed, we increase ϵ to force it to be satis�ed. Note
that in doing so, the linear pieces already constructed in Algorithm 1
are not invalidated since they satisfy a smaller tolerance. Also, our
implementation allows the user to specify a di�erent value of δ
along each dimension of x.

6 ERROR ANALYSIS USING OPTIMIZATION

In the previous section, we showed how a polynomial p(x) over a
domain D can be replaced using a piecewise linear function f (x)

such that for all x ∈ D, |p(x) − f (x)| ≤ ϵ , for a given ϵ > 0. In this
section, we complete the rule generation for a given neural network
N by computing bounds on | fN (x) − f (x)| over x ∈ D. Thus,

| fN (x) − p(x)| ≤ | fN − f | + | f − p |
︸ ︷︷ ︸

≤ϵ

.

Our approach builds on earlier work on output range generation
of neural networks, wherein we pose the problem as a mixed integer
linear program (MILP), and next combine local search with MILP
solvers to yield more e�cient bounds estimation.

De�nition 6.1 (Neural Network to PWL Error). Given a neural
network N over inputs x ∈ D and a PWL model fL : D 7→ R, �nd
an interval [a,b] such that (∀ x ∈ D) (fN (x) − fL(x)) ∈ [a,b].

To do so, we will �rst de�ne a mixed integer linear programming
(MILP) by separately encoding the network N and the PWL model
L into MIL constraints.

De�nition 6.2 (Mixed Integer LP (MILP)). Let x ∈ Rn be a set of
real variables and v ∈ Zm be a set of integer variables. A MILP over
x, v is an optimization problem of the form:

max aTx x + a
T
wv s.t. Ax + Bv ≤ c .

First, given a neural network N over inputs x ∈ D and output
y ∈ R, we derive a set of linear constraints ΨN (x,y, v) over (x,y) ∈

HSCC ’19, April 16–18, 2019, Montreal, QC, Canada Du�a, Chen and Sankaranarayanan

R
n+1 and binary variables v ∈ {0, 1}M , such that for any x ∈ D,

if z = FN (x) then (∃ v ∈ {0, 1}M) ΨN (x, z, v). In other words, the
constraints Ψ capture all possible input output pairs for the network
N . Conversely, if the network is constructed using ReLU units, we
conclude that whenever (∃ v ∈ {0, 1}M) ΨN (x, z, v) holds, we have
z = FN (x). This encoding is described in detail elsewhere [16, 29].

Encoding PWL Models: Let fL be a PWL model de�ned by L :
〈

Rj , cj ,dj
〉N
j=1, over x ∈ D (see Def. 5.1). Let D be represented by

the interval [aD , bD]. We brie�y describe the compilation of the
PWL model into constraints. To do so, we use variables x ∈ Rn for
the inputs and z ∈ R for the output of the model. Additionally, we
will introduce a fresh binary variable lj ∈ {0, 1} corresponding to
the piece

〈

Rj , cj ,dj
〉

. The �rst constraint encodes that only one of
the pieces can apply.

l1 + l2 + · · · + lN = 1 (6.1)

Next, we note that if li = 1, then x ∈ Rj . Let Rj : [aj , bj].

aj lj + aD (1 − lj) ≤ x ≤ bj lj + bD (1 − lj) . (6.2)

Next, we need to encode the relation between the output z and
inputs x whenever piece j is selected. To this e�ect, letM be a large
constant chosen so that for all x ∈ D, (a) fL(x) ∈ [−M,M], and (b)
|cTj x + dj | ≤ M for j = 1, . . . ,N . We can encode the input output
relation for the PWL as follows:

cTj x + dj − 2M(1 − lj) ≤ z ≤ cTj x + dj + 2M(1 − lj) (6.3)

The overall MIL constraints are given as ΨL(x, z, ®l) taken as the

conjunction of (6.1), (6.2) and (6.3), wherein ®l : (l1, . . . , lN) collects
the binary variables. The MILP encoding precisely captures the
function represented by the PWL model.

Theorem 6.3. For all x ∈ D, If z = fL(x) then, (∃ ®l ∈ {0, 1}
N)

ΨL(x, z, ®l).

The converse will also hold in general, if our encoding did not
e�ectively compute the topological closure of each rectangle in L.
Ensuring this will yield MILPs with strict inequalities, and therefore
is omitted for simplicity of presentation.

Combined MILP Model: Given the constraints ΨN (x,y, v) for a

neural network N and constraints ΨL(x, z, ®l) for a PWL model L,
the error interval is estimated by setting up a two MILPs as follows:

max(min) z − y

s.t. ΨN (x,y, v) (*MILP encoding for NN*)

ΨL(x, z, ®l) (*MILP encoding for PWL*)

x ∈ D, (v, ®l) ∈ {0, 1} |v |+ |
®l |

It is clear that the solutions to the MILP problem above yields the
required error bound between the PWL model and the neural net-
work. Combining this with the tolerance between the polynomial
p(x) and the PWL model yields the total error interval.

Theorem 6.4. The PWL model along with the error interval com-

puted above overapproximate the range of fN (x) wherein x ∈ D.

7 EXPERIMENTAL RESULTS

Figure 5: Flowpipes for the

Tora example with a larger

initial set

Figure 6: Flowpipes for the

Car Model

We implemented a prototype tool for our rule generation as
well as error analysis techniques and use it together with the tool
Flow* and Sherlock. The TM �owpipes under continuous dynamics
are computed by Flow* with the symbolic remainder technique
described in [11]. The polynomial rule generation procedure de-
scribed in Algorithms 1 and 2 along with the MILP encoding were
implemented on top of the tool Sherlock. The experiments were
run on a MacBook Pro Laptop, with 2.7 GHz Intel Core i5, with 16
GB RAM. The source code for repeating our experiments, can be
found at bit.ly/2Ibhfha . The virtual machine with all the dependen-
cies set up, and running experiments can be obtained by requesting
the authors.
Benchmarks. We consider the continuous dynamical systems de-
scribed in [24, 28, 34, 40, 47], and create the NFS benchmarks given
in Table 1. For each system, the controller is a neural network which
is trained using a standard MPC control scheme. Each benchmark
is also equipped with a time-varying disturbance which is added to
the control input. Our purpose is to prove that for each system, all
state variables stay in the safe range of [−2, 2] during the �rst N
control steps from the initial set.

The benchmark #9 is our motivating example while with a much
larger initial set. A sample reach set computation for 0.1 seconds of
Benchmark 9 has been shown here. We start with a set given by the
interval : I = [0.6, 0.7] × [−0.7,−0.6] × [−0.4,−0.3] × [0.5, 0.6]. By
uniformly sampling interval I we obtain the following polynomial,
through regression:

p(x0,x1,x2,x3) =0.62 + 1.01x0 + 0.54x1 − 0.69x2 − 2.1x3

+ 3.1e-4x20 + 7.1e-4x0x1 + 1.5e-4x
2
1

+ 1.1e-4x0x2 − 1.6e-4x1x2 + 1.5e-4x
2
2

− 2.5e-4x0x3 − 6.5e-4x1x3 + 6.8e-5x2x3 + 5.5e-5x
2
3

The max error between the neural network, and p, in the domain I

is deduced as e = 0.0178211. That is, the neural network behavior
is overapproximated by the TM : p(x0,x1,x2,x3) + [−e, e]. Using
this TM as the feedback function, the �owpipe computed yields
the following set, after 0.1s of time, [0.53, 0.63] × [−0.77,−0.66] ×
[−0.35,−0.24] × [0.49, 0.60].
Results.We present our experimental results in Table 2. We use the
regression order 2 in all of our tests, and to provide a comparison,
we give the column TI for the time costs of a direct combination of
Flow* and Sherlock, although it works on none of our benchmarks.
In all of the tests, we use the symbolic remainder method provided

Reachability Analysis for Neural Feedback Systems HSCC ’19, April 16–18, 2019, Montreal, QC, Canada

Table 1: Suite of benchmarks used for testing the proposed method. Legend : Var : # of state variables, N : # of control steps for
computing the reach sets , τc : Duration of control time steps, NN :, Neural Network k : # of layers in the Neural Network, N :
of neurons, init : Initial set for reachability computation,w : Disturbance range.

NN

Var N τc k N init w

1 2 30 0.2 5 56 [0.5, 0.9]2 ±10−2

2 2 50 0.2 6 156 [0.7, 0.9] × [0.42, 0.58] ±10−3

3 2 100 0.1 5 56 [0.8, 0.9] × [0.4, 0.5] ±10−2

4 3 50 0.2 6 156 [0.35, 0.45] × [0.25, 0.35] × [0.35, 0.45] ±10−2

5 3 50 0.2 6 156 [0.3, 0.4] × [0.3, 0.4] × [−0.4,−0.3] ±10−2

6 3 50 0.2 5 106 [0.35, 0.4] × [−0.35,−0.3] × [0.35, 0.4] ±10−3

7 3 20 0.5 2 500 [0.35, 0.45] × [0.45, 0.55] × [0.25, 0.35] ±10−2

8 4 25 0.2 5 106 [0.5, 0.6]4 ±10−4

9 4 20 1 3 300 [0.6, 0.7] × [−0.7,−0.6] × [−0.4,−0.3] × [0.5, 0.6] ±10−3

10 4 50 0.2 1 500 [9.5, 9.55] × [−4.5,−4.45] × [2.1, 2.11] × [1.5, 1.51] ±10−4

in Flow*, and the queue size is set to be 200. As an example, we
illustrate the �owpipes computed for the benchmark #9 in Figure 5.
Car example We trained a neural network controller, for the uni-
cylce model of a car as a stabilizing controller. An MPC controller
was used to train the network, which ends up having interesting
dynamics. We were able to compute the reach sets for this case,
which are shown in Fig 6.
Quadrotor example.We start with the initial set which is a box
with the maximum width 0.01, and try to compute the �owpipes
for the time horizon [0, 10]. We use a TM order 5 with the inte-
gration stepsize 0.01, the maximum error encountered in the PWL
approximations is bounded by 1.8e−4.

8 CURRENT LIMITATIONS

Figure 7: Flowpipes for the Drone Model
Our approach also provides a way to alleviate the wrapping

e�ect in reachability analysis for neural feedback systems by ap-
proximating neural networks locally as polynomials plus intervals.
However, it may lead to di�culties that arise primarily due to the
following limitations:

• Large initial sets. Large initial sets either cause large errors for
the local approximation or require high degree polynomials
for approximations.
• Divergent traces. Traces of dynamical systems can diverge
(eg., positive Lyapunov exponent) locally before converging,
as see in Fig. 7. In such cases, our method may not control
the explosion of overestimation. Currently, such cases can
be handled through a subdivision of the state-space which
can be expensive for a large model.

Solving these two problems will continue to drive our future e�orts
in this space.

9 CONCLUSION

Thus, we have presented an approach to compute accurate �ow-
pipe overapproximations for the reachable sets of neural feedback
systems. Our key contribution is a sound rule generation method
along with a rigorous error analysis technique, based on which
the wrapping e�ect in �owpipe computation is greatly reduced.
Future directions will investigate stochastic uncertainties in our
framework.
Acknowledgments: This work was supported in part by the Air
Force Research Laboratory (AFRL) and by the US NSF under Award
1646556.

REFERENCES
[1] Abadi, Martín et al. 2016. TensorFlow: A System for Large-scaleMachine Learning.

In Proc. OSDI’16. USENIX, 265–283.
[2] M. Altho�. 2015. An Introduction to CORA 2015. In Proc. of ARCH’15 (EPiC Series

in Computer Science), Vol. 34. EasyChair, 120–151.
[3] S. Bak and M. Caccamo. 2013. Computing Reachability for Nonlinear Systems

with HyCreate. In Demo and Poster Session in HSCC’13.
[4] S. Bak and P. S. Duggirala. 2017. HyLAA: A Tool for Computing Simulation-

Equivalent Reachability for Linear Systems. In Proc. of HSCC’17. ACM, 173–178.
[5] Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, Dimitrios Vytiniotis,

Aditya Nori, and Antonio Criminisi. 2016. Measuring neural net robustness with
constraints. In Advances in Neural Information Processing Systems. 2613–2621.

[6] M. Berz. 1999. ModernMapMethods in Particle Beam Physics. Advances in Imaging
and Electron Physics, Vol. 108. Academic Press.

[7] M. Berz and K. Makino. 1998. Veri�ed Integration of ODEs and Flows Using
Di�erential AlgebraicMethods onHigh-Order TaylorModels. Reliable Computing
4 (1998), 361–369. Issue 4.

[8] X. Chen. 2015. Reachability Analysis of Non-Linear Hybrid Systems Using Taylor
Models. Ph.D. Dissertation. RWTH Aachen University.

[9] X. Chen, E. Ábrahám, and S. Sankaranarayanan. 2012. Taylor Model Flowpipe
Construction for Non-linear Hybrid Systems. In Proc. of RTSS’12. IEEE Computer
Society, 183–192.

[10] X. Chen, E. Ábrahám, and S. Sankaranarayanan. 2013. Flow*: An Analyzer
for Non-linear Hybrid Systems. In Proc. of CAV’13 (LNCS), Vol. 8044. Springer,
258–263.

[11] X. Chen and S. Sankaranarayanan. 2016. Decomposed Reachability Analysis
for Nonlinear Systems. In 2016 IEEE Real-Time Systems Symposium (RTSS). IEEE
Press, 13–24.

[12] Antonio Eduardo Carrilho da Cunha. 2015. Benchmark: Quadrotor Attitude
Control. In Proc. of ARCH 2015 (EPiC Series in Computing), Vol. 34. EasyChair,
57–72.

HSCC ’19, April 16–18, 2019, Montreal, QC, Canada Du�a, Chen and Sankaranarayanan

Table 2: Details of the experiments for di�erent Benchmarks. Legend : #: Benchmark No., k : TM Integration Order , τI :
stepsize used for �owpipe construction, Po :, order of the polynomial used for the regression, ϵ : maximum computed

error bound between the neural network and polynomial, Tp : time cost for computing the reach sets using polynomial rule

generation, TI : time taken for computing the reachable sets using simple interval propagation, Pr : % of the time cost in

polynomial regression, Ppwl : % of the time cost in computing the Piecewise Linear Approximations for the polynomials

generated , Ps : % of the time cost in Sherlock for computing the error, Pf : % of the time cost in Flow* to compute the reachable

sets for the ODE. TI : time cost of a direct combination of Flow* and Sherlock, Lc : Maximum number of linear regions in one

control step .

k τI Po ϵ Tp (s) Pr (%) Ppwl (%) Ps (%) Pf (%) TI (s) Lc
1 4 0.02 2 0.66 6.5 2.2 2.3 14 81 × 31
2 5 0.02 2 0.2 46.0 1.3 1.4 42 54 × 31
3 4 0.02 2 1.89e-2 40.4 1.3 0.9 11 86 × 7
4 5 0.02 2 3.7e-2 21.8 2.4 4.2 62.6 30.2 × 76
5 4 0.02 2 6.8e-5 19.5 2.7 1.2 44.7 50.6 × 4
6 4 0.02 2 2.7e-2 15.3 2.3 1.7 12.0 82.7 × 6
7 5 0.05 2 1.2e-2 57.4 1.9 0.3 93 5 × 58
8 4 0.02 2 6e-2 13.1 1.87 7 13.3 75.3 × 156
9 4 0.1 2 6.8e-2 36.7 1.5 2.0 80 16.1 × 86
10 30 0.01 2 0.02 1081 0.4 0.1 0.85 98.3 × 16

[13] Luiz H. de Figueiredo and Jorge Stol�. 1997. Self-Validated Numerical Methods
and Applications. In Brazilian Mathematics Colloquium monograph. IMPA, Rio
de Janeiro, Brazil. Cf. http://www.ic.unicamp.br/~stol�/EXPORT/papers/by-tag/
�g-sto-97-iaaa.ps.gz.

[14] P. S. Duggirala, S. Mitra, M. Viswanathan, andM. Potok. 2015. C2E2: AVeri�cation
Tool for State�owModels. In Proc. of TACAS’15 (LNCS), Vol. 9035. Springer, 68–82.

[15] Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. 2018.
Learning and veri�cation of feedback control systems using feedforward neural
networks. IFAC-PapersOnLine 51, 16 (2018), 151–156.

[16] Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. 2018.
Output Range Analysis for Deep Feedforward Neural Networks. In NASA Formal
Methods, Aaron Dutle, César Muñoz, and Anthony Narkawicz (Eds.). Springer
International Publishing, Cham, 121–138.

[17] Rüdiger Ehlers. 2017. Formal Veri�cation of Piece-Wise Linear Feed-Forward Neu-
ral Networks. In ATVA (Lecture Notes in Computer Science), Vol. 10482. Springer,
269–286.

[18] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A.
Girard, T. Dang, and O. Maler. 2011. SpaceEx: Scalable Veri�cation of Hybrid
Systems. In Proc. of CAV’11 (LNCS), Vol. 6806. Springer, 379–395.

[19] LiMin Fu. 1994. Rule generation from neural networks. IEEE Transactions on
Systems, Man, and Cybernetics 24, 8 (Aug 1994), 1114–1124.

[20] E. Hainry. 2008. Reachability in Linear Dynamical Systems. In Proc. of CiE 2008
(LNCS), Vol. 5028. Springer, 241–250.

[21] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. 2016. Safety
Veri�cation of Deep Neural Networks. CoRR abs/1610.06940 (2016). http://arxiv.
org/abs/1610.06940

[22] M. Jankovic, D. Fontaine, and P. V. Kokotovic. 1996. TORA example: cascade- and
passivity-based control designs. IEEE Transactions on Control Systems Technology
4, 3 (1996), 292–297.

[23] Kyle Julian and Mykel J. Kochenderfer. 2017. Neural Network Guidance for
UAVs. In AIAA Guidance Navigation and Control Conference (GNC). https:
//doi.org/10.2514/6.2017-1743

[24] R. R. Kadiyala. 1993. A tool box for approximate linearization of nonlinear systems.
IEEE Control Systems 13, 2 (April 1993), 47–57. https://doi.org/10.1109/37.206985

[25] Gregory Kahn, Tianhao Zhang, Sergey Levine, and Pieter Abbeel. 2016. PLATO:
Policy Learning using Adaptive Trajectory Optimization. arXiv preprint
arXiv:1603.00622 (2016).

[26] Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochender-
fer. 2017. Reluplex: An E�cient SMT Solver for Verifying Deep Neural Net-
works. Springer International Publishing, Cham, 97–117. https://doi.org/10.
1007/978-3-319-63387-9_5

[27] S. Kong, S. Gao, W. Chen, and E. M. Clarke. 2015. dReach: δ -Reachability Analysis
for Hybrid Systems. In Proc. of TACAS’15 (LNCS), Vol. 9035. Springer, 200–205.

[28] Lectures. 2014. Nonlinear Systems and Control. http://people.ee.ethz.ch/~apnoco/
Lectures2014/.

[29] Alessio Lomuscio and Lalit Maganti. 2017. An approach to reachability anal-
ysis for feed-forward ReLU neural networks. CoRR abs/1706.07351 (2017).
arXiv:1706.07351 http://arxiv.org/abs/1706.07351

[30] K. Makino and M. Berz. 2003. Taylor models and other validated functional
inclusion methods. J. Pure and Applied Mathematics 4, 4 (2003), 379–456.

[31] S. Mitra and Y. Hayashi. 2000. Neuro-fuzzy rule generation: survey in soft
computing framework. IEEE Transactions on Neural Networks 11, 3 (May 2000),
748–768.

[32] R. E. Moore, R. B. Kearfott, and M. J. Cloud. 2009. Introduction to Interval Analysis.
SIAM.

[33] A. Neumaier. 1993. The Wrapping E�ect, Ellipsoid Arithmetic, Stability and Con�-
dence Regions. Springer Vienna, 175–190.

[34] W. Perruquetti, J. P. Richard, and P. Borne. 1996. Lyapunov analysis of sliding
motions: Application to bounded control. Mathematical Problems in Engineering
3, 1 (1996), 1 – 25.

[35] Luca Pulina andArmando Tacchella. 2010. An abstraction-re�nement approach to
veri�cation of arti�cial neural networks. In Computer Aided Veri�cation. Springer,
243–257.

[36] Luca Pulina and Armando Tacchella. 2012. Challenging SMT Solvers to Verify
Neural Networks. AI Commun. 25, 2 (2012), 117–135.

[37] Nathalie Revol and Fabrice Rouillier. 2005. Motivations for an Arbitrary Precision
Interval Arithmetic and the MPFI Library. Reliable Computing 11, 4 (2005), 275–
290. https://doi.org/10.1007/s11155-005-6891-y

[38] Kazumi Saito and Ryohei Nakano. 2002. Extracting regression rules from neural
networks. Neural Networks 15, 10 (2002), 1279 – 1288.

[39] Hanan J. Samet. 2006. Foundations of Multidimensional and Metric Data Structures.
Morgan Kaufmann.

[40] Mohamed Amin Ben Sassi, Ezio Bartocci, and Sriram Sankaranarayanan. 2017. A
Linear Programming-based iterative approach to Stabilizing Polynomial Dynam-
ics. In Proc. IFAC’17. Elsevier.

[41] Karsten Scheibler, Leonore Winterer, Ralf Wimmer, and Bernd Becker. 2015.
Towards veri�cation of arti�cial neural networks. In MBMV Workshop. 30âĂŞ40.

[42] Richard S. Sutton and Andrew G. Barto. 2017. Reinforcement Learning: An Intro-
duction. MIT Press.

[43] H. Tsukimoto. 2000. Extracting rules from trained neural networks. IEEE Trans-
actions on Neural Networks 11, 2 (Mar 2000), 377–389.

[44] Weiming Xiang, Hoang-Dung Tran, and Taylor T. Johnson. 2017. Output Reach-
able Set Estimation and Veri�cation for Multi-Layer Neural Networks. CoRR
abs/1708.03322 (2017). arXiv:1708.03322 http://arxiv.org/abs/1708.03322

[45] Weiming Xiang, Hoang-Dung Tran, and Taylor T. Johnson. 2107. Reachable Set
Computation and Safety Veri�cation for Neural Networks with ReLU Activations.
Cf. https://arxiv.org/pdf/1712.08163.pdf, posted on ArXIV Dec. 2017.

[46] Weiming Xiang, Hoang-Dung Tran, Joel A. Rosenfeld, and Taylor T. Johnson.
2018. Reachable Set Estimation and Veri�cation for a Class of Piecewise Linear
Systems with Neural Network Controllers. To Appear in the American Control
Conference (ACC), invited session on Formal Methods in Controller Synthesis.

[47] Dong-Hae Yeom and Young Hoon Joo. 2012. Control Lyapunov Function Design
by Cancelling Input Singularity. 12 (06 2012).

Reachability Analysis for Neural Feedback Systems HSCC ’19, April 16–18, 2019, Montreal, QC, Canada

A APPENDIX: PROOFS OF THEOREMS

We will now discuss the proofs of the various theorems stated in
the paper. We �rst consider Theorem 5.2 from page 6.

Theorem A.1. For any polynomial f , sample x, set S , tolerance ϵ

and minimum box width δ , the FindMaxInterval routine (a) always

terminates; (b) if it succeeds, returns a box B such that f (B) ⊆ [−ϵ, ϵ].

Proof. To prove that the FindMaxInterval routine (Algorithm 2)
always terminates, we need to prove that at each iteration of the
while loop (line 9) at least one of two progress conditions are met:
(a) the size of wlist decreases (else branch at line 17 or else branch
at line 14, or (b) the size of the list remains the same, but the volume
of the interval [a, b] strictly increases by at least δn (then branches
taken at lines 14 and 17). Consider a lexicographic ranking function
(|wlist|,−Πn

j=1(bj − aj)). We note that |wlist| ≥ 0 and the volume

of [a, b] is upper bounded by that of S .
To establish (b), we will prove the loop invariant that

EvaluateRange(f , [a, b]) ⊆ [−ϵ, ϵ]. This clearly holds the �rst time
the head of the while loop is visited (line 9) and each time [a, b]
is updated in a loop iteration, the loop invariant is re-established
(line 17). The rest follows by assuming the soundness property of
the EvaluateRange routine. �

Next, we consider the proof of theorem 5.4 in page 7. Let D2 f (x)

represent the Hessian matrix of a C2 function f : R
n 7→ R. The

i, j entry of the Hessian is
∂2f

∂xi ∂x j
. For a n × n symmetric matrix

M , let λmax(M) be the largest eigen value of M and λmin(M) be
the smallest eigenvalue. These are always real numbers and well-
known to be a continuous function of the matrixM . Finally, recall
that for a quadratic form q : xtAx, we have the inequality that
λmin(A)x

tx ≤ xtAx ≤ λmax(A)x
tx. The Euclidean norm of a vector

| |x| |2 is simply xtx.

Theorem A.2. For any compact set D, and �xed tolerance ϵ > 0,
there exists a sound procedure EvaluateRange and a corresponding

value of δ such that the assertion check in line 5 of algorithm 2 always

succeeds.

Proof. Using Lemma 5.3, we know that the function f and
sample x satisfy f (x) = 0 and ∇f (x) = 0. De�ne

N (x) : λmin(D
2 f (x)), andM(x) : λmax(D

2 f (x)) ,

the smallest and largest eigenvalues of the Hessian matrix of f eval-
uated at x. Note thatM is a scalar function of x and is continuous.

Now let us choose some δ . Using a Taylor series development of
f , we note

f (x + h) : f (x) + ∇f (x) · h
︸ ︷︷ ︸

=0

+

1

2
htD2 f (x̂)h ,

for some x̂ : x + αh. The �rst two terms vanish due to Lemma 5.3.
Therefore, the EvaluateRange(f , [a, b]) procedure is simply as

follows: (a) setm0 : maxz∈[a,b]M(z) and n0 : minz∈[a,b] N (z). (b)

β : 1
2 max(|m0 |, |n0 |)n | |b−a| |

2, and (c) returnEvaluateRange(f , [a, b]) :
[−β , β].

The soundness of the procedure follows from Taylor theorem.
Note that if x + h ∈ [a, b] then | |h| |22 ≤ ||b − a| |

2. Therefore,

| f (x + h)| = |
1

2
htD2 f (x̂)h|

We know that htD2 f (x̂)h ≤ M(x)hth ≤ m0 | |h| |
2
2 . Further-

more, htD2 f (x̂)h ≥ N (x)hth ≥ n0 | |h| |
2
2 . Therefore, |h

tD2 f (x̂)h| ≤

max(|m0 | | |h| |
2
2 , |n0 | | |h| |

2
2) ≤ max(|m0 |, |n0 |)| |h

2
2 | |. Putting it all to-

gether, we have

| f (x + h)| = |
1

2
htD2 f (x̂)h| ≤ β .

Next, given ϵ , we choose δ as follows.
Since D is compact and S ⊆ D. Therefore, let us de�nem∗ as

m∗ : max(|max
x∈D

M(x)|, |min
x∈D

N (x)|) .

The compactness of D and continuity ofM(x),N (x) guarantee that
m∗ exists. If m∗ = 0, then the second derivative vanishes every-
where and f is essentially the 0 function. For such a function, the
assertion in line 5 will never fail. Without loss of generality, let
m∗ > 0.

Consider the box B0 : [x − δ
2 1, x +

δ
2 1], chosen in line 2 of

Algorithm 2. Let us set 1
2m
∗nδ2 = ϵ , or in other words, δ :

√

2ϵ
m∗n .

We note that for any x+h ∈ B0, | f (x+h)| ≤
1
2m0 | |h| |

2
2 ≤

1
2m
∗nδ2 ≤

ϵ . Thus the assertion in line 5 will never fail if the value of δ is set

to at most
√

2ϵ
m∗n and the EvaluateRange function de�ned in this

proof is used. �

Next, we will consider the proof of theorem 5.5 from page 7.

Theorem A.3. If Algorithm 1 terminates with success for input p

over domain D with tolerance ϵ , then the resulting set of linear pieces

L de�ne a PWL function fL such that | fL(x) − p(x)| ≤ ϵ for each

x ∈ D.

Proof. We conclude that the �nal result fL must be a function
de�ned over the domainD. This is proved using a loop invariant that
⋃

〈Bs ,c,d 〉∈L Bs ∪ S = D holds for the while loop in line 4. Another
useful loop invariant to prove is that for all pieces (B, c,d) ∈ L,
we have B ∩ S = ∅ at the loop head (line 4). Next, we note that
the domain of the pieces are mutually exclusive. This is proved
by noting that the set Bs returned at line 8 must satisfy Bs ⊆ S .
Therefore, Bs cannot have a common intersection with any existing
piece in L. Together, we note that the linearization de�ned by fL
exists and Note that line 9 in Algorithm 1 follows directly from
Theorem 5.2. Therefore, the property | fL(x) − p(x)| ≤ ϵ holds for
each piece added to L in line 11. �

Finally, we will address the proof of Theorem 6.3 in page 8.

Theorem A.4. For all x ∈ D, If z = fL(x)

then (∃ ®l ∈ {0, 1}N) ΨL(x, z, ®l).

Proof. Suppose for some x ∈ D, we have that z = fL(x). Then,
x must belong to precisely one linear piece in x. Therefore, let it

belong to piece corresponding to ®lj . We will set ®lj = 1 and ®li = 0
for all i , j . We now verify that (6.1), (6.2) and (6.3) are all satis�ed

by the assignment to ®l . �

HSCC ’19, April 16–18, 2019, Montreal, QC, Canada Du�a, Chen and Sankaranarayanan

Table 3: ODE for the di�erent Benchmarks.

Benchmark ODE
1 Ûx1 = x2 − x

3
1 +w, Ûx2 = u

2 Ûx1 = x2, Ûx2 = ux
2
2 − x1 +w

3 Ûx1 = −x1(0.1+(x1+x2)2), Ûx2 = (u+x1+w)(0.1+
(x1 + x2)

2)

4 Ûx1 = x2 + 0.5x23 , Ûx2 = x3 +w, Ûx3 = u

5 Ûx1 = −x1+x2−x3+w, Ûx2 = −x1(x3+1)−x2, Ûx3 =
−x1 + u

6 Ûx1 = −x
3
1 + x2, Ûx2 = x32 + x3, Ûx3 = u +w

7 Ûx1 = x33 − x2 +w, Ûx2 = x3, Ûx3 = u

8 Ûx1 = x2, Ûx2 = −9.8x3 + 1.6x33 + x1x
2
4 , Ûx3 =

x4, Ûx4 = u

9 Ûx1 = x2, Ûx2 = −x1 + 0.1sin(x3), Ûx3 = x4, Ûx4 = u

10 Ûx1 = x4cos(x3), Ûx2 = x4sin(x3), Ûx3 = u2, Ûx4 =

u1 +w

B APPENDIX: DETAILS OF BENCHMARKS
AND EXPERIMENTAL RESULTS

We give details of the benchmarks in Table 1 and present the plots
of the �owpipes.

High Dimensional Example

We refer the reader to [12], for further details on the system dy-
namics. The initial set is given by the following : pn ∈ [−1,−0.99],
pe ∈ [−1,−0.99] , h ∈ [9, 9.01], u ∈ [−1,−0.99], v ∈ [−1,−0.99],
w ∈ [−1,−0.99], q0 ∈ [0, 0], q1 ∈ [0, 0], q2 ∈ [0, 0], q3 ∈ [1, 1],
p ∈ [−1,−0.99], q ∈ [−1,−0.99], r ∈ [−1,−0.99], pI ∈ [0, 0],
qI ∈ [0, 0], rI ∈ [0, 0], hI ∈ [0, 0]. The ODE equations governing the
dynamics are given by the following, where d is the time-varying
disturbance.

Ûpn = 2u(q20 + q
2
1 − 0.5) − 2v(q0q3 − q1q2) + 2w(q0q2 + q1q3)

Ûpe = 2v(q20 + q
2
2 − 0.5) + 2u(q0q3 + q1q2) − 2w(q0q1 − q2q3)

Ûh = 2w(q20 + q
2
3 − 0.5) − 2u(q0q2 − q1q3) + 2v(q0q1 + q2q3)

Ûu = rv − qw − 11.62(q0q2 − q1q3)

Ûv = pw − ru + 11.62(q0q1 + q2q3)

Ûw = qu − pv + 11.62(q20 + q
2
3 − 0.5) + control_input + d

Ûq0 = −0.5q1p − 0.5q2q − 0.5q3r

Ûq1 = 0.5q0p − 0.5q3q + 0.5q2r

Ûq2 = 0.5q3p + 0.5q0q − 0.5q1r

Ûq3 = 0.5q1q − 0.5q2p + 0.5q0r

Ûp = (−40.000632584pI − 2.8283979829540p) − 1.133407423682qr

Ûq = (−39.999804525qI − 2.8283752541008q) + 1.132078179614pr

Ûr = (−39.999789097rI − 2.8284134223281r) − 0.004695219978pq

ÛpI = p, ÛqI = q, ÛrI = r , ÛhI = h

Figure 8: Flowpipes computed for di�erent benchmarks 1 -

9 (left to right and top down). The red trajectories are the

simulation traces.

Figure 9: Flowpipes computed for the quadrotor model. The

red trajectories are the simulation traces.

